文档文档

为数据分配自定义状态

问题

您可能希望使用 monitor并利用诸如 monitor.stateChangesOnly() 之类的函数。但是,monitor.stateChangesOnly() 只允许您监视四种状态:“crit”(严重)、“warn”(警告)、“ok”(正常)和“info”(信息)。如果您想能够为自定义状态或多于四种状态分配和监视状态更改,该怎么办?

解决方案

定义您自己的自定义 stateChangesOnly() 函数。使用此处源代码中的函数并进行修改,以适应多于四种级别。在这里,我们考虑了六种不同的级别,而不是仅仅四种。

import "dict"
import "experimental"

stateChangesOnly = (tables=<-) => {
    levelInts =
        [
            "customLevel1": 1,
            "customLevel2": 2,
            "customLevel3": 3,
            "customLevel4": 4,
            "customLevel5": 5,
            "customLevel6": 6,
        ]

    return
        tables
            |> map(fn: (r) => ({r with level_value: dict.get(dict: levelInts, key: r._level, default: 0)}))
            |> duplicate(column: "_level", as: "____temp_level____")
            |> drop(columns: ["_level"])
            |> rename(columns: {"____temp_level____": "_level"})
            |> sort(columns: ["_source_timestamp", "_time"], desc: false)
            |> difference(columns: ["level_value"])
            |> filter(fn: (r) => r.level_value != 0)
            |> drop(columns: ["level_value"])
            |> experimental.group(mode: "extend", columns: ["_level"])
}

使用 array.from() 构建一些示例数据,并为其映射自定义级别

array.from(
    rows: [
        {_value: 0.0},
        {_value: 3.0},
        {_value: 5.0},
        {_value: 7.0},
        {_value: 7.5},
        {_value: 9.0},
        {_value: 11.0},
    ],
)
    |> map(
        fn: (r) =>
            ({r with _level:
                    if r._value <= 2.0 then
                        "customLevel2"
                    else if r._value <= 4.0 and r._value > 2.0 then
                        "customLevel3"
                    else if r._value <= 6.0 and r._value > 4.0 then
                        "customLevel4"
                    else if r._value <= 8.0 and r._value > 6.0 then
                        "customLevel5"
                    else
                        "customLevel6",
            }),
    )

示例数据的样子如下

_value_level
0.0customLevel2
3.0customLevel3
5.0customLevel4
7.0customLevel5
7.5customLevel5
9.0customLevel6
11.0customLevel6

现在应用我们的自定义 stateChangesOnly() 函数

import "array"
import "dict"
import "experimental"

stateChangesOnly = (tables=<-) => {
    levelInts =
        [
            "customLevel1": 1,
            "customLevel2": 2,
            "customLevel3": 3,
            "customLevel4": 4,
            "customLevel5": 5,
            "customLevel6": 6,
        ]

    return
        tables
            |> map(fn: (r) => ({r with level_value: dict.get(dict: levelInts, key: r._level, default: 0)}))
            |> duplicate(column: "_level", as: "____temp_level____")
            |> drop(columns: ["_level"])
            |> rename(columns: {"____temp_level____": "_level"})
            |> sort(columns: ["_source_timestamp", "_time"], desc: false)
            |> difference(columns: ["level_value"])
            |> filter(fn: (r) => r.level_value != 0)
            |> drop(columns: ["level_value"])
            |> experimental.group(mode: "extend", columns: ["_level"])
}

data =
    array.from(
        rows: [
            {_value: 0.0},
            {_value: 3.0},
            {_value: 5.0},
            {_value: 7.0},
            {_value: 7.5},
            {_value: 9.0},
            {_value: 11.0},
        ],
    )
        |> map(
            fn: (r) =>
                ({r with _level:
                        if r._value <= 2.0 then
                            "customLevel2"
                        else if r._value <= 4.0 and r._value > 2.0 then
                            "customLevel3"
                        else if r._value <= 6.0 and r._value > 4.0 then
                            "customLevel4"
                        else if r._value <= 8.0 and r._value > 6.0 then
                            "customLevel5"
                        else
                            "customLevel6",
                }),
        )

data
    |> stateChangesOnly()

这会返回

_value_level
3.0customLevel3
5.0customLevel4
7.0customLevel5
9.0customLevel6

此页面是否有帮助?

感谢您的反馈!


InfluxDB 3.8 新特性

InfluxDB 3.8 和 InfluxDB 3 Explorer 1.6 的主要增强功能。

查看博客文章

InfluxDB 3.8 现已适用于 Core 和 Enterprise 版本,同时发布了 InfluxDB 3 Explorer UI 的 1.6 版本。本次发布着重于操作成熟度,以及如何更轻松地部署、管理和可靠地运行 InfluxDB。

更多信息,请查看

InfluxDB Docker 的 latest 标签将指向 InfluxDB 3 Core

在 **2026 年 2 月 3 日**,InfluxDB Docker 镜像的 latest 标签将指向 InfluxDB 3 Core。为避免意外升级,请在您的 Docker 部署中使用特定的版本标签。

如果使用 Docker 来安装和运行 InfluxDB,latest 标签将指向 InfluxDB 3 Core。为避免意外升级,请在您的 Docker 部署中使用特定的版本标签。例如,如果使用 Docker 运行 InfluxDB v2,请将 latest 版本标签替换为 Docker pull 命令中的特定版本标签 — 例如

docker pull influxdb:2