操作列
使用以下常用查询来操作列
这些示例使用 NOAA 水样数据。
查找和计数列中的唯一值
查找和计数指定列中唯一值的数量。以下示例查找和计数收集数据的唯一位置。
查找唯一值
此查询
from(bucket: "noaa")
|> range(start: -30d)
|> group()
|> keep(columns: ["location"])
|> unique(column: "location")
示例结果
location |
---|
coyote_creek |
santa_monica |
计数唯一值
此查询
from(bucket: "noaa")
|> group()
|> unique(column: "location")
|> count(column: "location")
示例结果
location |
---|
2 |
重新计算 _values 列
要重新计算 _value
列,请在 map()
中使用 with
运算符来覆盖现有的 _value
列。
以下查询
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: -30d)
|> map(fn: (r) => ({r with _value: (float(v: r._value) - 32.0) * 5.0 / 9.0} ))
_field | _measurement | _start | _stop | _time | location | _value |
---|---|---|---|---|---|---|
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:00:00Z | coyote_creek | 27.77777777777778 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:06:00Z | coyote_creek | 22.77777777777778 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:12:00Z | coyote_creek | 30 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:18:00Z | coyote_creek | 31.666666666666668 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:24:00Z | coyote_creek | 25 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:30:00Z | coyote_creek | 21.11111111111111 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:36:00Z | coyote_creek | 28.88888888888889 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:42:00Z | coyote_creek | 24.444444444444443 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:48:00Z | coyote_creek | 29.444444444444443 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:54:00Z | coyote_creek | 26.666666666666668 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T01:00:00Z | coyote_creek | 21.11111111111111 |
••• | ••• | ••• | ••• | ••• | ••• | ••• |
计算新列
要使用行中的值计算并添加新列,请使用 map()
。以下示例将温度从华氏度转换为摄氏度,并将摄氏度值映射到新的 celsius
列。
以下查询
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: -30d)
|> map(fn: (r) => ({r with celsius: (r._value - 32.0) * 5.0 / 9.0}))
示例结果
_start | _stop | _field | _measurement | location | _time | _value | celsius |
---|---|---|---|---|---|---|---|
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:00:00Z | 82 | 27.78 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:06:00Z | 73 | 22.78 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:12:00Z | 86 | 30.00 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:18:00Z | 89 | 31.67 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:24:00Z | 77 | 25.00 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:30:00Z | 70 | 21.11 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:36:00Z | 84 | 28.89 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:42:00Z | 76 | 24.44 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:48:00Z | 85 | 29.44 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:54:00Z | 80 | 26.67 |
••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• |
此页是否对您有帮助?
感谢您的反馈!