使用 Flux 对数据进行窗口和聚合
本页面记录了 InfluxDB OSS 的早期版本。 InfluxDB OSS v2 是最新稳定版本。 查看等效的 InfluxDB v2 文档: 使用 Flux 对数据进行窗口和聚合。
对时序数据执行的一个常见操作是将数据分组到时间段内,或“窗口化”数据,然后聚合窗口值到一个新值。本指南将指导您如何使用 Flux 窗口化和聚合数据,并演示数据在此过程中的形状。
如果您刚开始学习 Flux 查询,请查看以下内容
以下示例深入介绍了窗口化和聚合数据的步骤。aggregateWindow()
函数 为您执行这些操作,但了解数据在此过程中的形状有助于成功创建所需输出。
数据集
在本指南的范围内,定义一个变量来表示您的基数据集。以下示例查询主机的内存使用情况。
dataSet = from(bucket: "db/rp")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> drop(columns: ["host"])
此示例从返回的数据中删除了 host
列,因为内存数据仅针对单个主机进行跟踪,这简化了输出表。删除 host
列是可选的,在监视多个主机的内存时不推荐这样做。
dataSet
现在可以用来表示您的基数据,其外观类似于以下内容
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:50:00.000000000Z 71.11611366271973
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:50:10.000000000Z 67.39630699157715
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:50:20.000000000Z 64.16666507720947
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:50:30.000000000Z 64.19951915740967
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:50:40.000000000Z 64.2122745513916
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:50:50.000000000Z 64.22209739685059
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:00.000000000Z 64.6336555480957
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:10.000000000Z 64.16516304016113
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:20.000000000Z 64.18349742889404
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:30.000000000Z 64.20474052429199
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:40.000000000Z 68.65062713623047
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:50.000000000Z 67.20139980316162
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:00.000000000Z 70.9143877029419
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:10.000000000Z 64.14549350738525
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:20.000000000Z 64.15379047393799
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:30.000000000Z 64.1592264175415
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:40.000000000Z 64.18190002441406
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:50.000000000Z 64.28837776184082
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:00.000000000Z 64.29731845855713
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:10.000000000Z 64.36963081359863
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:20.000000000Z 64.37397003173828
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:30.000000000Z 64.44413661956787
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:40.000000000Z 64.42906856536865
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:50.000000000Z 64.44573402404785
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:00.000000000Z 64.48912620544434
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:10.000000000Z 64.49522972106934
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:20.000000000Z 64.48652744293213
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:30.000000000Z 64.49949741363525
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:40.000000000Z 64.4949197769165
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:50.000000000Z 64.49787616729736
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:55:00.000000000Z 64.49816226959229
数据窗口化
使用 window()
函数 根据时间边界对您的数据进行分组。与 window()
一起传递的最常见的参数是 every
,它定义了窗口之间的持续时间。其他参数也是可用的,但在此示例中,将基数据集窗口化为一分钟窗口。
dataSet
|> window(every: 1m)
every
参数支持所有 有效的持续时间单位,包括 日历月(1mo
) 和 年(1y
)。
每个时间段窗口输出在其自己的表中,包含窗口内的所有记录。
window() 输出表
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:50:00.000000000Z 71.11611366271973
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:50:10.000000000Z 67.39630699157715
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:50:20.000000000Z 64.16666507720947
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:50:30.000000000Z 64.19951915740967
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:50:40.000000000Z 64.2122745513916
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:50:50.000000000Z 64.22209739685059
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:51:00.000000000Z 64.6336555480957
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:51:10.000000000Z 64.16516304016113
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:51:20.000000000Z 64.18349742889404
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:51:30.000000000Z 64.20474052429199
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:51:40.000000000Z 68.65062713623047
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:51:50.000000000Z 67.20139980316162
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:52:00.000000000Z 70.9143877029419
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:52:10.000000000Z 64.14549350738525
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:52:20.000000000Z 64.15379047393799
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:52:30.000000000Z 64.1592264175415
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:52:40.000000000Z 64.18190002441406
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:52:50.000000000Z 64.28837776184082
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:53:00.000000000Z 64.29731845855713
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:53:10.000000000Z 64.36963081359863
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:53:20.000000000Z 64.37397003173828
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:53:30.000000000Z 64.44413661956787
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:53:40.000000000Z 64.42906856536865
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:53:50.000000000Z 64.44573402404785
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:00.000000000Z 64.48912620544434
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:10.000000000Z 64.49522972106934
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:20.000000000Z 64.48652744293213
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:30.000000000Z 64.49949741363525
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:40.000000000Z 64.4949197769165
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:50.000000000Z 64.49787616729736
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:55:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:55:00.000000000Z 64.49816226959229
在 InfluxDB UI 中可视化时,每个窗口表以不同的颜色显示。
数据聚合
聚合函数 取表格中所有行的值并使用它们执行聚合操作。结果以单个行表中的新值输出。
由于窗口化数据已拆分为单独的表,聚合操作针对每个表单独运行并输出仅包含聚合值的新的表格。
在此示例中,使用 mean()
函数 输出每个窗口的平均值
dataSet
|> window(every: 1m)
|> mean()
mean() 输出表
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ----------------------------
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 65.88549613952637
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ----------------------------
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 65.50651391347249
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ----------------------------
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 65.30719598134358
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ----------------------------
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 64.39330975214641
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ----------------------------
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 64.49386278788249
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ----------------------------
2018-11-03T17:55:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 64.49816226959229
由于每个数据点都包含在其自己的表中,在可视化时,它们看起来像是单个、未连接的点。
重新创建时间列
请注意,_time
列不在聚合输出表中。 因为每个表中的记录都被汇总在一起,它们的时戳不再适用,该列也被从组键和表中移除。
同时请注意,_start
和_stop
列仍然存在。这些代表时间窗口的下限和上限。
许多Flux函数依赖于_time
列。要在聚合函数之后进一步处理您的数据,您需要重新添加_time
。使用duplicate()
函数将_start
或_stop
列复制为一个新的_time
列。
dataSet
|> window(every: 1m)
|> mean()
|> duplicate(column: "_stop", as: "_time")
duplicate()输出表
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:50:00.000000000Z 2018-11-03T17:51:00.000000000Z used_percent mem 2018-11-03T17:51:00.000000000Z 65.88549613952637
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:51:00.000000000Z 2018-11-03T17:52:00.000000000Z used_percent mem 2018-11-03T17:52:00.000000000Z 65.50651391347249
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:52:00.000000000Z 2018-11-03T17:53:00.000000000Z used_percent mem 2018-11-03T17:53:00.000000000Z 65.30719598134358
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:53:00.000000000Z 2018-11-03T17:54:00.000000000Z used_percent mem 2018-11-03T17:54:00.000000000Z 64.39330975214641
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:54:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:55:00.000000000Z 64.49386278788249
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:55:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:55:00.000000000Z 64.49816226959229
“取消窗口”聚合表
通常,将聚合值保存在单独的表中并不是您想要的数据格式。使用window()
函数将数据“取消窗口”到一个单一的无限(inf
)窗口中。
dataSet
|> window(every: 1m)
|> mean()
|> duplicate(column: "_stop", as: "_time")
|> window(every: inf)
窗口化需要一个_time
列,这就是为什么在聚合后需要重新创建_time
列的原因。
取消窗口输出表
Table: keys: [_start, _stop, _field, _measurement]
_start:time _stop:time _field:string _measurement:string _time:time _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------------ ----------------------------
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:51:00.000000000Z 65.88549613952637
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:52:00.000000000Z 65.50651391347249
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:53:00.000000000Z 65.30719598134358
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:54:00.000000000Z 64.39330975214641
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:55:00.000000000Z 64.49386278788249
2018-11-03T17:50:00.000000000Z 2018-11-03T17:55:00.000000000Z used_percent mem 2018-11-03T17:55:00.000000000Z 64.49816226959229
当聚合值在单个表中时,可视化中的数据点相连。
总结
您现在已创建了一个Flux查询,该查询可以窗口化和聚合数据。本指南中概述的数据转换过程应适用于所有聚合操作。
Flux还提供了aggregateWindow()
函数,该函数为您执行所有这些单独的功能。
以下Flux查询将返回相同的结果
aggregateWindow函数
dataSet
|> aggregateWindow(every: 1m, fn: mean)
这个页面有帮助吗?
感谢您的反馈!