文档文档

使用Flux进行窗口和聚合数据

查看等效的 InfluxDB v2 文档: 使用Flux进行窗口和聚合数据.

使用时间序列数据进行的一个常见操作是将数据分组到时间窗口中,或“窗口化”数据,然后将窗口化的值聚合到一个新的值中。本指南将引导您通过使用Flux进行窗口和聚合数据,并演示数据在过程中的形状。

如果您刚开始学习Flux查询,请查看以下内容

以下示例深入探讨了进行窗口和聚合数据所需的步骤。该 aggregateWindow() 函数 为您执行这些操作,但了解数据在过程中的形状有助于成功创建所需输出。

数据集

为了本指南的目的,定义一个表示您的基数据集的变量。以下示例查询主机的内存使用情况。

dataSet = from(bucket: "db/rp")
    |> range(start: -5m)
    |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent")
    |> drop(columns: ["host"])

此示例从返回的数据中删除了 host 列,因为内存数据只为单个主机跟踪,并且简化了输出表。删除 host 列是可选的,不推荐在多个主机上监控内存时使用。

dataSet 现在可以用来表示您的基数据,其外观类似于以下内容

Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:00.000000000Z             71.11611366271973
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:10.000000000Z             67.39630699157715
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:20.000000000Z             64.16666507720947
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:30.000000000Z             64.19951915740967
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:40.000000000Z              64.2122745513916
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:50.000000000Z             64.22209739685059
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z              64.6336555480957
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:10.000000000Z             64.16516304016113
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:20.000000000Z             64.18349742889404
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:30.000000000Z             64.20474052429199
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:40.000000000Z             68.65062713623047
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:50.000000000Z             67.20139980316162
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z              70.9143877029419
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:10.000000000Z             64.14549350738525
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:20.000000000Z             64.15379047393799
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:30.000000000Z              64.1592264175415
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:40.000000000Z             64.18190002441406
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:50.000000000Z             64.28837776184082
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             64.29731845855713
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:10.000000000Z             64.36963081359863
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:20.000000000Z             64.37397003173828
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:30.000000000Z             64.44413661956787
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:40.000000000Z             64.42906856536865
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:50.000000000Z             64.44573402404785
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.48912620544434
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:10.000000000Z             64.49522972106934
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:20.000000000Z             64.48652744293213
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:30.000000000Z             64.49949741363525
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:40.000000000Z              64.4949197769165
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:50.000000000Z             64.49787616729736
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

窗口化数据

使用 window() 函数 根据时间范围对数据进行分组。传递给 window() 的最常见参数是 every,它定义了窗口之间的时间长度。其他参数也是可用的,但在此示例中,将基数据集窗口化为每分钟一个窗口。

dataSet
    |> window(every: 1m)

every 参数支持所有 有效的持续时间单位,包括 日历月(1mo年(1y

每个时间窗口输出在其自己的表中,包含窗口内的所有记录。

window() 输出表
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:00.000000000Z             71.11611366271973
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:10.000000000Z             67.39630699157715
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:20.000000000Z             64.16666507720947
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:30.000000000Z             64.19951915740967
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:40.000000000Z              64.2122745513916
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:50.000000000Z             64.22209739685059


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z              64.6336555480957
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:10.000000000Z             64.16516304016113
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:20.000000000Z             64.18349742889404
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:30.000000000Z             64.20474052429199
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:40.000000000Z             68.65062713623047
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:50.000000000Z             67.20139980316162


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z              70.9143877029419
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:10.000000000Z             64.14549350738525
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:20.000000000Z             64.15379047393799
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:30.000000000Z              64.1592264175415
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:40.000000000Z             64.18190002441406
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:50.000000000Z             64.28837776184082


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             64.29731845855713
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:10.000000000Z             64.36963081359863
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:20.000000000Z             64.37397003173828
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:30.000000000Z             64.44413661956787
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:40.000000000Z             64.42906856536865
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:50.000000000Z             64.44573402404785


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.48912620544434
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:10.000000000Z             64.49522972106934
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:20.000000000Z             64.48652744293213
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:30.000000000Z             64.49949741363525
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:40.000000000Z              64.4949197769165
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:50.000000000Z             64.49787616729736


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:55:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

在InfluxDB UI中可视化时,每个窗口表以不同的颜色显示。

Windowed data

聚合数据

聚合函数 取表中的所有行值并使用它们执行聚合操作。结果以单个行表中的新值输出。

由于窗口化数据被分割到单独的表中,聚合操作针对每个表单独运行,并输出只包含聚合值的新的表。

对于此示例,使用 mean() 函数 输出每个窗口的平均值

dataSet
    |> window(every: 1m)
    |> mean()
mean() 输出表
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem             65.88549613952637


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem             65.50651391347249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem             65.30719598134358


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem             64.39330975214641


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem             64.49386278788249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:55:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem             64.49816226959229

因为每个数据点都包含在其自己的表中,所以当可视化时,它们看起来像是单独的、未连接的点。

Aggregated windowed data

重新创建时间列

请注意,_time 列不在 聚合输出表 中。 因为每个表中的记录都被聚合在一起,它们的日期不再适用,该列被从组键和表中删除。

同时请注意,_start_stop 列仍然存在。这些表示时间窗口的下限和上限。

许多Flux函数依赖于_time列。在使用聚合函数进一步处理数据后,需要重新添加_time。使用duplicate()函数来复制_start_stop列作为新的_time列。

dataSet
    |> window(every: 1m)
    |> mean()
    |> duplicate(column: "_stop", as: "_time")
duplicate()输出表
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z             65.88549613952637


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z             65.50651391347249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             65.30719598134358


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.39330975214641


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49386278788249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:55:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

“取消窗口”聚合表

通常,将聚合值保存在单独的表中不是您希望的数据格式。使用window()函数将数据“取消窗口”到一个单一的无限(inf)窗口。

dataSet
    |> window(every: 1m)
    |> mean()
    |> duplicate(column: "_stop", as: "_time")
    |> window(every: inf)

窗口化需要一个_time列,这就是为什么在聚合后需要重新创建_time的原因。

取消窗口输出表
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z             65.88549613952637
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z             65.50651391347249
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             65.30719598134358
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.39330975214641
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49386278788249
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

在单个表中包含聚合值,可视化中的数据点会连接起来。

Unwindowed aggregate data

总结

您现在已创建了一个Flux查询,该查询可以对数据进行窗口化和聚合。本指南中概述的数据转换过程应适用于所有聚合操作。

Flux还提供了aggregateWindow()函数,该函数为您执行所有这些单独的功能。

以下Flux查询将返回相同的结果

aggregateWindow函数
dataSet
    |> aggregateWindow(every: 1m, fn: mean)

这个页面有帮助吗?

感谢您的反馈!


Flux的未来

Flux将进入维护模式。您可以在不更改代码的情况下继续按照目前的方式使用它。

了解更多信息

InfluxDB v3增强功能和InfluxDB Clustered现已全面上市

新功能包括更快的查询性能和管理工具,推动了InfluxDB v3产品线的进步。InfluxDB Clustered现已全面上市。

InfluxDB v3性能和功能

InfluxDB v3产品线在查询性能方面取得了重大提升,并提供了新的管理工具。这些增强包括用于监控InfluxDB集群健康的操作仪表板,InfluxDB Cloud Dedicated中的单一登录(SSO)支持以及用于令牌和数据库的新管理API。

了解新的v3增强功能


InfluxDB Clustered全面上市

InfluxDB Clustered现已全面上市,并为您在自管理堆栈中提供了InfluxDB v3的功能。

与我们谈论InfluxDB Clustered